A probabilistic predictive Bayesian approach for determining the representativeness of health and demographic surveillance networks

نویسندگان

  • C. Edson Utazi
  • Sujit K. Sahu
  • Peter M. Atkinson
  • Natalia Tejedor
  • Andrew J. Tatem
چکیده

Health and demographic surveillance systems, formed into networks of sites, are increasingly being established to circumvent unreliable national civil registration systems for estimates of mortality and its determinants in low income countries. Health outcomes, as measured by morbidity and mortality, generally correlate strongly with socioeconomic and environmental characteristics. Therefore, to enable comparison between sites, understand which sites can be grouped and where additional sites would aid understanding of rates and determinants, determining the environmental and socioeconomic representativeness of networks becomes important. This paper proposes a full Bayesian methodology for assessing current representativeness and consequently, identification of future sites, focusing on the INDEPTH network in sub-Saharan Africa as an example. Using socioeconomic and environmental data from the current network of 39 sites, we develop a multi-dimensional finite Gaussian mixture model for clustering the existing sites. Using the fitted model we obtain the posterior predictive probability distribution for cluster membership of each 1 × 1 km grid cell in Africa. The maximum of the posterior predictive probability distribution for each grid cell is proposed as the criterion for representativeness of the network for that particular grid cell. We demonstrate the conceptual superiority and practical appeal of the proposed Bayesian probabilistic method over previously applied deterministic clustering methods. As an example of the potential utility and application of the method, we also suggest optimal site selection methods for possible additions to the network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rule-based joint fuzzy and probabilistic networks

One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...

متن کامل

Load-Frequency Control: a GA based Bayesian Networks Multi-agent System

Bayesian Networks (BN) provides a robust probabilistic method of reasoning under uncertainty. They have been successfully applied in a variety of real-world tasks but they have received little attention in the area of load-frequency control (LFC). In practice, LFC systems use proportional-integral controllers. However since these controllers are designed using a linear model, the nonlinearities...

متن کامل

Risk Analysis of Operating Room Using the Fuzzy Bayesian Network Model

To enhance Patient’s safety, we need effective methods for risk management. This work aims to propose an integrated approach to risk management for a hospital system. To improve patient’s safety, we should develop flexible methods where different aspects of risk and type of information are taken into consideration. This paper proposes a fuzzy Bayesian network to model and analyze risk in the op...

متن کامل

Probabilistic Contaminant Source Identification in Water Distribution Infrastructure Systems

Large water distribution systems can be highly vulnerable to penetration of contaminant factors caused by different means including deliberate contamination injections. As contaminants quickly spread into a water distribution network, rapid characterization of the pollution source has a high measure of importance for early warning assessment and disaster management. In this paper, a methodology...

متن کامل

A Probabilistic Bayesian Classifier Approach for Breast Cancer Diagnosis and Prognosis

Basically, medical diagnosis problems are the most effective component of treatment policies. Recently, significant advances have been formed in medical diagnosis fields using data mining techniques. Data mining or Knowledge Discovery is searching large databases to discover patterns and evaluate the probability of next occurrences. In this paper, Bayesian Classifier is used as a Non-linear dat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016